岩土工程有限元分析软件

PLAXIS 3D[®] 2016

案例教程

双侧壁导坑法隧道施工过程分析

北京筑信达工程咨询有限公司 北京市古城西街 19 号研发主楼 4 层, 100043

版权

计算机程序 PLAXIS 及全部相关文档都是受专利法和版权法保护的产品。全球范围的所 有权属于 Plaxis bv。如果没有 Plaxis 和北京筑信达工程咨询有限公司的预先书面许可,未经 许可的程序使用或任何形式的文档复制一律禁止。

更多信息和此文档的副本可从以下获得:

北京筑信达工程咨询有限公司

北京市古城西街 19号研发主楼 4 层 100043

电话: 86-10-6892 4600

传真: 86-10-6892 4600 - 8

电子邮件: support@cisec.cn

网址: www.cisec.cn

北京筑信达工程咨询有限公司版权所有©2017

目录

1.	模型框	既况	1
2.	几何枚	莫型定义	2
	2.1	模型边界	2
	2.2	定义土层	2
	2.3	定义结构单元	3
	2.4	定义隧道	3
3.	网格戈	刘分	11
-	3.1	有限元网格加密	11
	3.2	有限元网格自动划分和预览	12
4.	分步症	新工定义	13
5	结果有		14
5.	-11/17/2	二 日	

1. 模型概况

本案例模拟岩石隧道双侧壁导坑法施工开挖过程。图 1、图 2 分别为双侧壁导坑法隧道 施工的横断面和纵剖面示意图,隧道围岩级别为V级,隧道埋深 35m。分步施工过程按照实 际施工顺序进行,分块、分步开挖。首先开挖导洞,施工导洞衬砌和锚杆;然后开挖上台阶, 施工上台阶衬砌和锚杆;最后开挖下台阶,施工下台阶衬砌并拆除临时支撑。每次开挖进尺 均为 2m。

由于模型关于隧道中心线对称,本案例仅取隧道半侧进行分析。案例主要介绍了土层材 料定义方法、隧道设计器使用方法、计算阶段设置及计算结果查看方法,通过学习本案例读 者可以掌握双侧壁导坑法在 PLAXIS 3D 中的模拟过程以及计算结果分析方法。 提示:学习本案例教程之前,需要已经掌握 PLAXIS 软件的基本操作。

图 2 隧道纵剖面示意图

2. 几何模型定义

2.1 模型边界

在项目属性窗口>>模型标签>>模型边界中定义 X 和 Y 方向的边界, Xmin=0, Xmax=50; Ymin=0, Ymax=20。

2.2 定义土层

在 X=0, Y=0 的位置处创建钻孔,如图 3 在修改土层对话框中定义水头高度 h=-70。然后 添加一层土层并创建土层材料,土层厚度 65m,土层材料属性见表 1。

112 修改土层		
Borehole_1	🤜 添加(A) 🛛 🔁 插入(D)	
y 0.000	土层 水 初始条件 面	场数据
水头 -70	土层	Borehole_1
1.1	# 材料]	顶部 底部
- 0.000	1 <未赋值> 0	0.000 -65.00
-		
E		
-20.00		
E_40.00		
E		
-50,00		

图 3 修改土层

表1 土层材料				
参数	名称	岩石	单位	
材料模型	模型	摩尔库仑	-	
材料类型	类型	排水	-	
水位以上土体容重	γ_{unsat}	20	kN/m ³	
水位以下土体容重	γ_{sat}	20	kN/m ³	
弹性模型	E'	1200e3	kN/m ²	
泊松比	V	0.35	-	
黏聚力	c'	26	kN/m ²	
内摩擦角	φ'	80	0	
剪胀角	ψ	0	0	
界面	R _{inter}	0.67	-	

2.3 定义结构单元

在创建隧道前先定义衬砌、临时支撑、锚杆等结构单元的材料参数。衬砌、临时支撑用 板模拟,锚杆用嵌入式梁单元模拟,材料参数见表 2、表 3。

参数	符号	衬砌	临时支撑	单位
厚度	d	0.2	0.0227	m
重度	γ	22	22	kN/m ³
材料属性	Туре	线性、各项同性	线性、各项同性	-
杨氏模量	E	21e6	21e6	kN/m ²
泊松比	ν	0.2	0.2	

表 2 衬砌、临时支撑材料参	参数
----------------	----

表3 锚杆材料参数

参数	符号	锚杆	单位
杨氏模量	E	70e6	kN/m ²
重度	γ	17	kN/m ³
桩类型		预定义	
预定义桩类型		实心圆桩	
直径	Diameter	0.042	m
侧摩阻分布	Туре	线性	
桩顶侧阻力	T _{top,max}	158	kN/m
桩底侧阻力	T _{bot,max}	158	kN/m

2.4 定义隧道

通过隧道设计器可以定义隧道横截面和纵剖面。在结构模式中点击创建隧道¹,选 择在(0,0,-45)处创建隧道,弹出隧道设计器。隧道的创建按照以下步骤进行:

- 在一般标签定义形态类型为自由,选择定义右半部分。
- 在线段标签下点击添加 ④, 参数设置方法如图 4, 将 segment_1 线段类型设置为弧, 相对起始角: 0; 半径: 17; 线段角度: 20。

統信达

图 4 创建 segment_1

- 在线段标签下点击添加 (),用同样的方法添加 segment_2、segment_3。segment_2
 线段类型:弧;相对起始角:0;半径:3.5;线段角度:90。segment_3线段类型:弧;相对起始角:0;半径:6.5;线段角度:35。
- 点击**延伸至对称轴 2000**,完成对隧道轮廓的定义。定义完成后如图 5 所示。

图 5 线段标签参数设置

在子阶段标签通过创建圆、线与隧道轮廓进行布尔运算,创建隧道临时支撑,上下台阶分界线。点击子阶段标签,点击添加金,生成 Subtions{0},位移 1:8,位移 2:0;
 类型:弧;相对起始角:0;半径:5;线段角度:360。点击子阶段标签,点击添加金,
 生成 Subtions{1},位移 1:0,位移 2:5;类型:线;相对起始角:0;长度:3。定义

完成后如图6所示。

图 6 子阶段标签设置

● 选中所有对象,右键进行布尔运算,删除不需要的线。定义完成后如图7所示。

图 7 布尔运算后的横断面

- 在属性菜单下创建衬砌临时支撑、锚杆并赋予相应的材料参数。点击属性菜单,在一般标签下,选中外轮廓线右键创建板,创建负向界面;在选择窗口中给板赋予衬砌的材料参数。
- 选中代表临时支撑的线右键创建板;在选择窗口中给板赋予临时支撑的材料参数;选中
 隧道土体在选择窗口为土体赋予岩石材料属性,创建完成后如图8。

图8定义衬砌、临时支撑

在锚杆标签下定义锚杆。点击锚杆标签,选中如图9所示隧道轮廓线,点击创建岩石锚
 固 创建锚杆,按图9所示参数定义拱顶锚杆。材料:锚杆;锚杆数量(宽度):4;
 锚杆长度:3.5;距起始点偏移量(宽度):0.6;间距(宽度):1.2;距起始点偏移量(长度):0;锚杆数量(深度):1;距起始点偏移量(深度):1;间距(深度):2。

图 9 创建拱顶锚杆

选中如图 10 所示隧道轮廓线,点击创建岩石锚固 创建锚杆,按图 10 所示参数定义 锚杆。材料:锚杆;锚杆数量(宽度):9;锚杆长度:3.5;距起始点偏移量(宽度):0.18;间距(宽度):1.2;距起始点偏移量(长度):0;锚杆数量(深度):1;距起始 点偏移量(深度):1;间距(深度):2。

图 10 创建侧壁墙锚杆

 在轨迹菜单下创建隧道延纵剖面分段开挖进尺。点击轨迹菜单,在线段标签创建线,用 于模拟隧道纵剖面轨迹。点击添加,创建 segment{0},如图 11 设置线段类型:线; 相对起始角:0;长度:20。

图 11 隧道轨迹

 点击切片标签,在该标签下可以设置隧道分步开挖进尺,如图 12 设置切片方法为长度; 切片长度:2;起始于:开始。

图 12 隧道纵剖面切片

点击 Sequencing 标签,定义隧道分步施工阶段开挖的土体和施工的衬砌、临时支撑等。
 点击竖向工具栏添加隧道阶段子步, 上成子步 Stept_1_1,模拟开挖导洞。如图 13,取消勾选,冻结侧壁导坑土体,开挖导洞。

图 13 开挖导洞

 与上步操作类似,点击添加隧道阶段子步, ,生成子步 Stept_1_2,模拟施工导洞衬砌 和锚杆。如图 14,点击代表衬砌、锚杆、临时支撑的单元,在选择窗口中激活,同时 激活界面。

图 14 施工导洞衬砌和锚杆

● 与上面的操作类似,如图 15,点击添加隧道阶段子步 3,生成子步 3tept_1_3,开挖上 台阶,选中上台阶土体并冻结;

图 15 开挖上台阶

点击添加隧道阶段子步,如图 16,生成子步 Stept_1_4,施工上台阶衬砌和锚杆,选
 中上台阶代表上台衬砌和锚杆的单元,在选择窗口中激活,同时激活界面;

記信达

图 16 施工上台阶衬砌和锚杆

● 点击添加隧道阶段子步 🚳 ,如图 17 , 生成子步 Stept_1_5 ,开挖下台阶。

图 17 开挖下台阶

点击添加隧道阶段子步,如图 18,生成子步 Stept_1_6,施工衬砌、拆除临时支撑。
 选中并冻结下台阶土体,在选择窗口中激活下台阶衬砌和界面,选中代表临时支撑的板单元,在选择窗口冻结板单元;

图 18 施工下台阶并拆除临时支撑

点击生成,完成对隧道的定义。隧道定义完成后如图 19 所示。

图 19 定义完成的隧道模型

3. 网格划分

切换到网格模式,进行有限元网格剖分。

3.1 有限元网格加密

 如图 20,程序已自动将结构单元网格进行加密,以绿色显示,其余部分未加密,以灰 色显示。

文件(F) 编辑(E) 查看(V) 网格 选项(O) 专家(X)	帮助(H)
5 🖻 🗐 🔦 🎢 🗶 📓 🗇 🛛] 🔆 🗖 🗆 🛆 🖷 🐼 🔍 🔍 🐥 😭
土 结构 网络 渗流条件 分步	
Initial phase [InitialPhase] Image: Ima	
选择对象浏览器	
- @	
模型浏览器	
 ■ 異性序 ● @L/F ■ @L/F 	
	命令行 建型页度 info point 1 使用 1nfo i调双改合值号 3356、使用 command : 命令宣音目标命令的密数 13357
	<u> </u>
	命 令

图 20 有限元网格加密

3.2 有限元网格自动划分和预览

- 点击 ¹⁰ 创建网格,设置单元分布(Element distribution)为粗。点击确认,程序自动划 分网格。
- 点击 🥰 **预览**生成的网格,图 21 为程序自动生成的网格,可以看出隧道周边网格较密。
- 单击**关闭**按钮,关闭输出窗口。

图 21 生成的网格 12

4. 分步施工定义

本例模拟双侧壁导坑法开挖的施工过程。

- Initial Phase: 阶段窗口采用默认设置,计算类型: k0 过程;荷载类型:分步施工。
- Phase1: 点击添加阶段 [™] 添加一个新阶段,阶段窗口采用默认设置,计算类型: 塑性

计算;荷载类型:分步施工;程序自动勾选重置位移为零。如图 22 在模型浏览器》隧道菜单下右击 Tunnel_1,在弹出窗口中点击 Advance to text tunnel step,完成第一阶段定义。

图 22 phase1 阶段定义

● Phase2: 点击添加阶段 ම 添加一个新阶段,按照 phase1 方法再次在模型浏览器右击

Tunnel_1, 在弹出窗口中点击 Advance to text tunnel step, 完成第二阶段定义后如 图 23 所示。

图 23 激活导坑衬砌和临时支撑

● Phase3: 点击添加阶段 🗟 添加一个新阶段,在模型浏览器右击 Tunnel_1,在弹出窗口

中点击 Advance to text tunnel step。

- Phase4: 点击添加阶段 毫添加一个新阶段,在模型浏览器右击 Tunnel_1,在弹出窗口
 中点击 Advance to text tunnel step。
- Phase5: 点击添加阶段 > 添加一个新阶段,在模型浏览器右击 Tunnel_1,在弹出窗口
 中点击 Advance to text tunnel step。
- Phase6:点击添加阶段 滚添加一个新阶段,在模型浏览器右击 Tunnel_1,在弹出窗口 中点击 Advance to text tunnel step。经过上述操作完成对双侧导坑法隧道施工完整 过程的模拟,定义完成后如图 24 所示。

图 24 双侧壁导坑法隧道施工

5. 结果查看

图 25 为隧道围岩竖向变形云图。从图中可以发现,由于开挖卸荷,隧道拱顶周围有向下的位移,最大值 6.49mm,在拱顶位置;而隧道拱底附近有向上隆起的趋势,最大位移 6.299mm。

图 25 围岩竖向变形

开挖之后隧道围岩主应力方向如图 26 所示,从图中可以看出,最大主应力方向发生明显偏转,开挖面周围最大主应力方向几乎与隧道断面平行,最小主应力方向与隧道断面接近垂直。随着与开挖断面距离的增加逐渐恢复到初始应力状态。

图 26 围岩主应力分布

衬砌沿隧道环向的轴力、弯矩如图 27、图 28 所示。可以看出,隧道环向轴力最大值为 2009kN/m,出现在临时支撑靠近上台阶中间位置;衬砌上轴力分布较均匀,临时支撑上不 同位置轴力差别较大。在临时支撑与隧道衬砌相交处弯矩值最大,约为 45.54kN m/m。

图 27 衬砌轴力 N2 云图

图 28 衬砌弯矩 M22 云图

本教程到此结束!